

Timing Studies for Efficient Data Transfer
Between the NOvA Data Concentrator

Modules and the NOvA Trigger Processors

Stephen Foulkes
Fermi National Accelerator Laboratory

Abstract
This document describes performance testing and results for the NOvA data acquisition
development effort. The tests attempt to benchmark the performance of the Linux TCP/IP
and SCTP/IP stack in an effort to optimize the software and hardware for the NOvA
trigger processors.

1 Test System Setup

Four nodes in the FCC 2 computer room were used for this test. Each was a dual AMD
Athlon 1900+ with 1GB of ram. The tests made use of the 3com 3c905c 10/100 Ethernet
cards that were integrated with the motherboard. Each card had an MTU of 1500 bytes
and was plugged into the same 10/100Mb switch.

All systems were identical, running Fermi Linux 4.2 with a 2.6.9 SMP kernel. The test
software was compiled with the GNU C++ compiler, version 3.4.4. The only
modification made to the test nodes was to open a port in the firewall so that test nodes
could receive data.

2 Test System Software

Three different versions of the test system software have been written. The first uses
TCP exclusively, and does not reassemble transmissions if they are broken up during
transport. Its main purpose is to measure CPU usage as a function of the number of open
connections. The second version also uses TCP, but reassembles transmissions if they
are broken up during transport. The third version uses SCTP, which guarantees that
message boundaries are kept intact.

The times() function was used to determine the run time of the program as well as the
amount of processor time used. This is the same method that the “time” utility uses.

2.1 Data Concentrator Module

The software that simulated the Data Concentrator Module would open up a series of
connections to a trigger processor node and then randomly select one of the open
connections and send a stream of data. The number of connections, total number of
transmissions, amount of data sent per transmission and the rate of transmissions are
specified on the command line.

The second and third versions of the DCM software also include a 4 byte header that
indicates the length of the message being sent.

2.2 Trigger Processor Software

The Trigger Processor software listens for and then accepts connections from the Data
Concentrator Module. As data is sent, it is copied into a buffer and then passed off to the
event building software. The Trigger Processor software is instrumented to keep track of

the total run time, the total CPU time used, the number of iterations in the main loop, as
well as the number of connections that are handled in each iteration of the main loop.
The total number of transmissions, total number of connections and the size of each
transmission are passed to the Trigger Processor software from the command line.

The Trigger Processor software is a single threaded process, and uses the epoll interface
available in the Linux 2.6 kernel to manage its open connections. Epoll is very similar to
select and poll, in which it monitors a number of connections and then determines which
connections are able to be read from or written to. What makes epoll better than select()
or poll() is that the mechanism for passing down the list of connections to monitor is
separate from the mechanism used to get the state of each connection. With epoll the
connection list does not have to be passed to the kernel on every iteration of the main
loop.

2.3 Python Scripts

Two python scripts were written to control the Data Concentrator Module and the Trigger
Processor. A range of options would be specified in each script, and the script would
take care of iterating through each option and logging the results.

Another python script was written to generate the test set for the second and third
versions of the test software. A test set would consist of a list of message sizes that the
DCM would send to the Trigger Processor.

3 Tests Run

Two instances of the first test were run: one with ~1900 transmissions per second and
one with ~3800 transmissions per second. Each set of parameters was repeated four
times during each instance. The number of open connections varied from 250 to 1000 in
increments of 50. Six transmission sizes consisting of 10 bytes, 100 bytes, 250 bytes,
500 bytes, 1000 bytes and 2000 bytes were run for each set of open connections. A
transmission size of 4000 bytes was also run for the test with ~1900 transmissions per
second. This could not be run for the other test due to the fact that only 100Mb
equipment was used.

For the second test, one million message sizes were generated by the testgen.py script.
The average message size was about 9000 bytes, with a standard deviation of 1000 bytes.
The script did not generate any message sizes that were less than 8000 bytes. The
distribution can be seen in figure 1. A test was run with the amount of connections open
varying from 250 to 500 in increments of 50. During these tests, the software did not do
anything to limit the data rate as in previous tests.

Frequency of Message Sizes

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

80
00

83
00

86
00

89
00

92
00

95
00

98
00

10
10

0
10

40
0

10
70

0
11

00
0

11
30

0
11

60
0

11
90

0
12

20
0

12
50

0
12

80
0

Message Size (bytes)

Fr
eq

ue
nc

y

Figure 1

4 Test Results

4.1 The number of open connections has little impact on CPU
usage

Figure 2 plots the number of open connections vs. CPU usage for the test run with ~1900
transmissions per second and figure 3 plots the same for the test run with ~3800
transmissions per second.

Number of Connections vs. CPU Usage (~1900 sends per second)

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200

Number of Connections

C
PU

 U
sa

ge
 (p

er
ce

nt
ag

e) 10 bytes
100 bytes
250 bytes
500 bytes
1000 bytes
2000 bytes
4000 bytes

Figure 2

Number of Connections vs. CPU Usage (~3800 sends per second)

0

2

4

6

8

10

12

14

0 200 400 600 800 1000 1200

Numbr of Connections

CP
U

Us
ag

e
(p

er
ce

nt
ag

e) 10 bytes
100 bytes
250 bytes
500 bytes
1000 bytes
2000 bytes

Figure 3

All tests run with transmission sizes of 500 and 1000 bytes are completely flat across the
range of open connections. Tests run with smaller transmissions actually perform better
with a larger number of connections.

The 10, 100 and 250 bytes tests experienced a factor of 3 less CPU usage with 1000 open
connections then with 250 open connections. Figures 4 and 5 plot the CPU usage vs. the
number of connections handled per loop iteration. These show that CPU usage increases
as the number of connections handed per loop iteration decreases. This makes sense, as
less loop iterations means less system calls and jumps between user and kernel space.

CPU Usage vs. recv()s per Loop Iteration (~1900 sends per second)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

CPU Usage (percentage)

re
cv

()s
 p

er
 lo

op
 it

er
at

io
n 10 bytes

100 bytes
250 bytes
500 bytes
1000 bytes
2000 bytes
4000 bytes

Figure 4

CPU Usage vs. recv()s per Loop Iteration (~3800 sends per second)

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14

CPU Usage (percentage)

re
cv

()s
 p

er
 lo

op
 it

er
at

io
n

10 bytes
100 bytes
250 bytes
500 bytes
1000 bytes
2000 bytes

Figure 5

4.2 SCTP has more CPU overhead, as well as transfer overhead
than TCP

Figure 6 plots the number of open connections vs. CPU usage for the tests that compared
TCP to SCTP. On average, the SCTP test program required 30-40 percent more CPU
than the TCP program to perform the same task.

Number of Connections vs. CPU Usage

0

2

4

6

8

10

12

14

200 250 300 350 400 450 500 550

Number of Connections

CP
U

Us
ag

e
(p

er
ce

nt
ag

e)

TCP
SCTP
Linear (TCP)
Poly. (SCTP)

Figure 6

Figure 7 plots the number of open connections vs. the transfer rate for each test. The
SCTP tests ran about 30% slower than the TCP tests due to increased overhead, and
degraded with the number of open connections.

Number of Connections vs. Data Rate

0

10

20

30

40

50

60

70

80

90

100

200 250 300 350 400 450 500 550

Numer of Connections

D
at

a
Ra

te
 (M

bp
s)

TCP
SCTP
Linear (TCP)
Poly. (SCTP)

Figure 7

5 Apparent problems with SCTP

Initially, I had problems with the SCTP test programs stalling out in the middle of the
tests. A quick search of the internet turned up several similar reports, and no apparent
solutions. The source of my problems weren’t with SCTP, but with the way I was polling
the open sockets.

There are two ways to poll sockets with epoll: edge triggered and level triggered. In edge
triggered mode, sockets are only returned from the epoll_wait() system call when their
status changes. If a socket has 2kb of data waiting, and I only read 1kb, a subsequent call
to epoll_wait() will not return this socket again. In level triggered mode, all sockets will
be returned that have data waiting.

I initially had epoll set in edge triggered mode, and this was causing the hang-ups that I
was seeing. I don’t know why I didn’t see this problem with the TCP test programs, as
they were setup the same way. Changing epoll to run in level triggered mode solved the
problem.

	1 Test System Setup
	2 Test System Software
	2.1 Data Concentrator Module
	2.2 Trigger Processor Software
	2.3 Python Scripts
	3 Tests Run
	4 Test Results
	4.1 The number of open connections has little impact on CPU usage
	4.2 SCTP has more CPU overhead, as well as transfer overhead than TCP

	5 Apparent problems with SCTP

